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J. Phys. A:  Math. Gen. 16 (1983) 4221-4231. Printed in Great Britain 

Analytic properties of integrals over the continuum as a 
function of the interaction parameter 

L G D'yachkov and G A Kobzev 
Institute of High Temperatures of the USSR Academy of Sciences, Korovinskoe Chaussee, 
127412, Moscow, USSR 

Received 30 December 1981 

Abstract. The integral of the modulus squared of a radial matrix element, taken over the 
continuous energy spectrum, is considered as a function of the interaction parameter A .  
It is assumed that the matrix element is that of an N-order differential operator with 
exponentially decreasing coefficients, where 0 5 N 5 2. The analytic properties of this 
integral in  the neighbourhood of a bound-state appearance threshold A. are investigated. 
It is shown that the integral has a branch cut on the complex A plane crossing the physical 
region (the real axis) at the threshold A , ) ,  An analytic continuation of the integral into 
the second Riemann sheet is found, and i t  is shown that it contains a bound-state term. 
Thus the corresponding total quantity (the integral over the continuum and the sum over 
the bound states) is a smooth function of A .  The threshold behaviour of the integral and 
the bound-state term is considered. 

1. Introduction 

The problem of analyticity of the physical quantities with respect to the interaction 
parameter has been considered by many authors (Ebeling et a1 1976 and references 
therein). Particular attention has been paid to investigations of the two-body partition 
function and the second virial coefficient. It has been shown that the analyticity of 
these quantities is not violated when two-body bound states arise as the interaction 
parameter is increased. 

In this paper we consider the analytic properties of the integral of the modulus of 
a radial matrix element, taken over the continuum, as a function of the interaction 
parameter in  the neighbourhood of a bound-state appearance threshold. Integrals of 
this type arise, for example, in radiation theory. The emission and absorption 
coefficients are expressed in terms of such integrals, if the matrix element under the 
integral is the dipole one. In this paper we consider a more general case: we assume 
that the matrix element is that of an N-order differential operator with exponentially 
decreasing coefficients, where O S N  ~ 2 .  In appendix 1 it is shown that the dipole 
and kinetic energy matrix elements may be represented in this form. Also the matrix 
elements of the exponential potentials often used in nuclear calculations are, obviously, 
the particular case of the matrix element under consideration for N = 0. 

It is shown below that the integral has a branch cut in the complex plane of the 
interaction parameter A ,  which crosses over the real axis (the physical region) at the 
point A 0  corresponding to a bound-state appearance threshold. A discontinuity at the 
cut is compensated for by a bound-state term, thus the corresponding total quantity 

@ 1983 The Institute of Physics 4221 



4222 L G D'yachkov and G A Kobzev 

(containing both the integral over the continuum and the bound-state term) is a smooth 
function of A .  It can be considered as an analytic continuation of the integral into 
the second sheet of the Riemann surface. 

For the absorption coefficient these results without the complete proof have been 
reported (D'yachkov and Kobzev 1981a). For the particular case of radiation processes 
in the square well potential, the problem of continuity between bound and unbound 
(virtual and resonant) states is considered in detail by D'yachkov and Kobzev (1981b). 

In 9: 2 we formulate the problem and give the relations needed later on. In particular 
the wavefunctions are expressed in  terms of the regular solutions of the radial 
Schrodinger equation and the Jost functions. In 9: 3 the analyticity of the matrix 
element with the regular solutions is proved. In 9: 4 an analytic continuation of the 
integral under consideration into the second Riemann sheet is obtained, and it is 
shown that it contains a bound-state contribution. The threshold behaviour of the 
integral and the bound-state term is examined in  5 5. The effect of a potential barrier 
on the threshold behaviour is discussed in appendix 2 .  

2. Formulation of the problem and preliminaries 

Let us consider two spinless non-relativistic particles interacting by means of the 
potential 

(11 U (r, A 1 = u o ( r )  +Aul(r)  

where ~ " , ~ ( r )  satisfy the condition 

and are continuous functions for r > 0 with the exception, possibly, of a finite number 
of the points of finite discontinuities; t' l ( r l  is an attractive potential, therefore bound 
states should appear as A is increased. 

This paper is aimed at the investigation of the analytic properties of the quantity 
given by 

I = [ l ' F ( E I ~ ( E ' ~ k ~ E ) ~ 2  dE, O < E S a ; ,  ( 3 )  

as a function of the interaction parameter A close to a bound-state appearance 
threshold ho.  It is assumed that the matrix element in (3)  is given by 

where A,,,, ( r )  satisfy 

and the condition of continuity similar to that given above for the potential, P,(E, r, A )  
is the radial wavefunction satisfying 

d2P/dr2+{2E-[1(1+ lI/r2]--u(r, h I } P =  0 16) 
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and 

JomP/ (E ,  r ,A)f ' l (E' ,r ,A)dr = 8 ( E - E ' ) .  

We assume that E'  in (3) and (4) is related to E by a function E '  = g ( E ) ,  F ( E )  and 
g(E) are analytic functions in a certain region enclosing the integration path, 
O s E  < E ,  and 

I gCE) l~  E > 0 (7) 
in this region (it should be noted that condition (7 )  excludes the case E '  = E ) .  

( 6 )  defined by the boundary conditions (Taylor 1972) 
Let us consider the regular, pl (  k ,  r, A ) ,  and the irregular, x r ( k ,  r, A ) ,  solutions of 

where k 2  = 2E. Then the Jost function can be written as 

f r ( k ,  A = k - ' ( x l  a d a r  -P I  a x d a r ) .  
The regular solution is an entire function of k .  The Jost function is an analytic function 
of k for Im k > -a (Newton 1960, 1966). In the strip IIm kl <U 

( 9 )  

It is known that in the case of a potential u ( r ,  A )  = Av(r) satisfying (2) ,  cpI and fi are 
entire functions of A (Newton 1960, 1966). This result can be easily expanded to the 
more general case of the potential given by (1). 

f ?  ( k  *, A * )  = f / ( - k ,  A 1. 

For scattering states m e  can write 

where 

If E '  is a discrete level, E ' =  E;)  = 5k; f  < O ,  then (De Alfaro and Regge 1965) 
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3. Analytic properties of k, k', A )  

In order to show that Zfrt( k, k', A )  is an analytic function of k, k' and A we use the 
standard method. To prove the existence and the analytic properties of pi, one uses 
the iterative solution of the integral equation equivalent to (6) with (8) (Newton 1960, 
1966, De Alfaro and Regge 1965) 

qi"(k,  r, A )  = l O ' g , ( k ,  r, r')v(r', A)pjm-I)(k,  r ' ,  A )  dr', m a l ,  

where ur and ur are the Ricatti-Bessel functions 

The bounds 

G I k I r exp( Cib ( 1 + I A I ) + I 4 r 1, 
where v = Im k and CI is constant, are valid (Newton 1960). 

known properties of the Ricatti-Bessel functions we find 
We get an analogous representation for the first derivative ap,/ar. Using the well 

agf(k, r, W a r  = h ( k ,  r, r') - (Ur)gr(k, r, r'), 

hr(k,  r, r ' )  = u,(kr')u,-l(kr) -u,-l(kr)u,(kr'), 

api"/ar = 6 im!  - ( l / r )qim),  

&)"'(k ,  r, A )  = d I r h l ( k ,  r, r')v(r', A)pl"-"(k, r', A )  dr'. 

r ' d r ,  

r ' c r ,  

6)"' = kul-](kr) ,  

m s l .  

Thus, we obtain 

a d a r  = - (1/r)por 
where 

33 

5r= c si" 
m = O  

Using the known bounds for the Ricatti-Bessel functions we can easily obtain for r' s r 

and therefore 
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Then we can conclude that 5, and consequently acpl/ar are entire functions of k and 
A .  Also we have the bound 

a d  k,  r, A ) / a r  9 C,l kl exp[G b( 1 + / A  I) + I VI r3. 

For the second derivative we obtain 

la2cpI/dr21 s [ lkI2r2+ 1 ( f  + 1) + d(1 +lA1) ]Cl (k l r - l  exp[C,b(l + l A l )  + /  vir]. 

Here we have used the bound 

/ u g , l ( r ) ( r 2  c d < CC 

which follows from (2) and the condition of the continuity. Thus we can write for 
O s n  + a ' s 2  

I A,, ( r ) (a ' / a r cpI ( k,  r, A ( a ' ' / a rn  ' ) cpIt ( k ' , r, A ) I 
s c,c,,~ kk'lr2-"-"' l A , , ~ ( r ) l  exp[(C,+ C,.)b(l + / A / )  +( lv l  + I  v' l )r l  

x (1 +Sn2[-1 + 1( f  + 1) + Ikl2r2 + d ( l  + IA I)] 
+13,~~[-1 + f ' ( l ' +  1)+ /k '12 r2+d( l  -+ IA I)]}. 

As a result the integrand in (11) is an entire function of k ,  k '  and A for fixed r 2 0 ,  
and it is a continuous function of r for fixed k, k '  and A .  It is bounded in the product 
of any closed regions on the k ,  k ' ,  A planes and the positive half of the r axis. 
Furthermore, if lvl+ lv'l< 2a then the limit 

exists and is finite. Thus, if 

IIm k I + IIm k' l< 2a, (14) 
then Zu,(k, k ' ,  A )  is an entire function of A and ao analytic function of k and k '  
(Markushevitz 1978). 

If E' = Eh < 0 is a discrete level then the conditions (14) and ( 5 )  can be weakened. 
In this case cp1,  and x ,  are multiples of one another: 

cpdkb, r, A 1 = c x l ( k b ,  r,  A 1. 
In order to prove the convergence of (13) at the upper end, we can use the bound 

/ a"X, , (kb ,  r, A ) / a r " ' ~ s C l ~ ~ k b ~ " ' e x p [ C l ~ 6 ( 1  +lh/ ) - Im k d r ] ,  
which is valid for k # 0 and large enough r, and is obtained by the method above. 
Therefore (14) can be substituted by 

0 d n ' s  2 ,  

1Imkl-ImkI1<2a.  

Since k; = i lk&/  we have the condition 

IIm kl-  lk[ll < 2a. 

If we restrict ourselves to the strip IIm kl s l1 < 5, where f = min kh ( A )  in the neighbour- 
hood of A, (we exclude the accidental case of the degeneration kb = k,  = O  at A,), then 
we can consider operators with the coefficients A,,, ( r )  increased exponentially so that 
2a  > 5 ,  - 5. 
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4. Analytic continuation of I ( A )  

Inserting (10) into (3) ,  we can write 

where = (2E)”’, k ’  = [g(k2/2)]”* = q (k) .  Taking into account ( 7 ) ,  we can conclude 
that q ( k )  is an analytic function in a certain region enclosing the integration path 
- E s  k s E. I t  is easily seen that (1.5) is an analytic function of A with the exception 
of branch cuts along the trajectories of the zeros of f , ( k ,  A )  and f,.(q (k) ,  A )  for real k 
running from -E  to &. It is known that f r (k ,  A ) cannot vanish for real A and real k # 0 
(Newton 1960, 1966). Therefore, according to (7 ) ,  the branch cut originated from 
zeros of f ,  (q ( k ) ,  A ) does not cross the real A axis and lies off it. Since we are interested 
in physical (real) values of A ,  this cut may be disregarded. The branch cut originated 
from zeros of f,(k, A )  is symmetric with respect to the real A axis. It crosses over the 
A axis at the point A. corresponding to a bound-state appearance threshold. Discon- 
tinuity of I ( A )  at the branch cut is connected with the fact that poles of the integrand 
in (15) (the zeros of f,(*k, A ) )  cross over the integration path (the real k axis). 

Let us continue I ( A )  into the second Riemann sheet and consider the physical 
meaning of the continuation. For this purpose the integration contour should be 
deformed in order that the poles do not cross over it. The trajectories of zeros of the 
Jost function for real A are well known (see e.g. Demkov and Drukarev 1965, Newton 
1966, Taylor 1972). The zeros off,(k, A )  andf,(-k, A 1 from two sides of the integration 
contour tend to coalesce in the origin k = 0 as A --* ho,  and the contour becomes pinched 
between these poles of the integrand. Consequently we must go round the point A ” .  
Figure l ( a )  shows the trajectories of the zeros of f,(*k,A) for the circular path in 
the upper half of the A plane, figure 1 ( b )  shows the trajectories for the circular path 
in the lower half-plane. The corresponding deformations of the integration contour 
are given in figures 2 ( a )  and ( b ) .  The analytic continuation of I ( A )  into the second 

n Re A A 0  Re h 

A, --- 

I m k  I m  k I m  k I m  k 

-- ---_ 
R e k  

I 

( a  I bi 

Figure 1. Trajectories of the zeros of f i ( k ,  A 1 (full curbes) and f i ( - k ,  A I (broken curves) 
for two circular paths around the threshold point A,, I aJ  abobe and i b J  below i t  

sheet defined by the deformed contour integration can be written as 

I , i A ) = I ( A ) + I o ( A )  

where I ( A  1 is the first-sheet branch given by (1.51, Io (A  1 is the difference of the residues 
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l a )  j b )  

Figure 2. Deformations of the integration contour 
corresponding to the circular paths ( a )  above A. and 
( b )  below A o .  

Figure 3. The branch cuts of I ( A )  corresponding to 
bound states of I = 0 and I > O .  

of the integrand at the poles i k o  (i.e. at the zeros of f r ( * k ,  A ) ) :  

Io(A ) = 2.rri(R ( - k d  - R  ( k o ) )  

(we assume that the poles remain in the region of analyticity of fr, F and q). Obviously 
I & )  does not depend on the circular path around A o .  Therefore we may put 

I,( A o) = lim I (A  - E ) = lim ( I  ( A  + E ) + Io( A + F ) ) 
F -0 E -0 

Since the integrand in (15) is an even function of k ,  the residues are equal in value 
but opposite in  sign. Thus, we get 

Io0  = 
8*(Eo)z?r ( k o ,  k ' ,  A 1 

rk'(Jfr/Jk)(ko,  A ) f r ( -ko ,  A ) f r , ( k ' ,  A ) f r , ( - k ' ,  A 1 

where Eo = ikg is the bound state energy, k '  = q ( k o ) .  A comparison with (12) gives 

I o ( A  = F(Eo)l(E'I@,i)I'. 

Thus, Io  is the bound-state contribution. 
If E' is a discrete level, alterations of the obtained equations are clear. 
We have obtained the result which, from the physical point of view, is explicit. 

An analytic continuation of (3)  into the region above a bound-state appearance 
threshold should contain the contribution of the bound state. 

5. Threshold behaviour of I ( A )  

In this section we wish to examine the behaviour of I ( A )  near the threshold A,) .  Firstly 
we find the shape of the branch cut, A ( k  1, in the neighbourhood of A",  using a method 
analogous to that presented by Ostrovsky and Solovyov (1972). Writing the Jost 
function as 

f i i k ,  A 1 = K i ( k 2 ,  A 1 +ik"+'Li(k2, A 

where Ki and L ,  are real-valued functions for k 2  and A both real (Drukarev 1963), 
we expand Ki and Li in a double power series of both k' and A - A o .  Sincefi(O, A,]) = 0, 
we find 

(16) A ( k ) = A - ( K  "" /K io ' ) k ' - i(L ;Oo'/K )(I' ' ) k " + 0 ( k ' ) 
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where KI""' = d"+"K1/a(k2)" a h "  at k 2  = 0, A = A o  and the same for Limn' too, s = 3 
for 1 = 0 and s = 4 for 1 > 0. Therefore, for 1 = 0 the branch cut crosses the real A axis 
at right angles, for 1 > 0 it is tangential to the A axis and has the shape of a beak. 
Inverting (20) ,  we have for 1 > 0 

k : ( A )  = - ( K i o l ' / K ; ' " ' ) ( A  - A ( ) ) .  

Consequently Ki'")/K"''  > 0 ,  since E ,  = i k i  < 0 for A - A. > 0. Thus we know the 
direction of the beak. Figure 3 shows the crossing of the branch cut with the real A 
axis for two cases: 1 = 0 and 1 > 0. 

We now consider the behaviour of I ( A )  near A o .  It should be noted that 
Z i  ( k o ,  k ' ,  A )  = O(ki"2)  as follows from (8). Taking into account that f , ( - k o ,  A )  = 
-2ik~"'Ll(ko,  A 1, and using again the expansion of Ll, we get the jump of I ( A  at the 
threshold 

1 =o ,  

where 

For 1 > 0 the jump of Z ( A )  is related to the fact that the shape resonance due to the 
centrifugal barrier becomes a bound state at the threshold A o .  In the region below 
A O  it makes a contribution to the integral I ( A ) .  At the threshold A "  the bound state 
contribution Io  is separated from the scattering state contribution I ( A  ) (D'yachkov 
1981). 

In an analogous way we can find that dIo/dA is finite at the threshold A , )  for all 1 
except 1 = 1. For 1 = 1 dIo/dA increases as Ikol-' = ( K ~ 1 0 ' / K ~ 0 1 ' ) ' ' 2 ( A  -Ao)- '"  when 
A - + A o  (A > A o )  (cf (17) ) .  The following equations show the behaviour of dZo/dA at 
A. (the limits are the right-hand ones): 

1 = 0, 

where k ' = q (0). 
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Schematically the threshold behaviour of Z(A ) and Zo(A ) are shown in figure 4. 

A0 x 

Figure 4. Behaviour of the scattering state, I ( h  ), and the bound state, I , (h  1, contributions 
near the appearance threshold h o  of a bound state of angular momentum I = 0, I = 1 or / 2 2. 

6. Conclusions 

We have considered a function of the interaction parameter, Z(A), given by the integral 
(3) over the continuous spectrum, and found its analyticity properties in the neighbour- 
hood of a bound-state appearance threshold A o .  We have shown that Z(A) has a 
branch cut crossing the physical region (the real A axis) at the threshold A o ,  and found 
its shape near the point A".  The quantity Z(A), as a function of real A ,  has a discontinuity 
at the threshold corresponding to a bound state of angular momentum 1 > 0. At the 
threshold corresponding to 1 = 0 there is only a discontinuity of the first derivative. 
The discontinuity is compensated for by a bound-state term. Thus, the total quantity 
taking into account both the bound and the scattering state contributions is a smooth 
function of A .  Figure 4 shows the threshold behaviour of the scattering and the 
bound-state contributions to the total quantity. We have shown that the total quantity 
is an analytic continuation of Z(A 1 into the second sheet of the Riemann surface. The 
analyticity of the physical quantity given by the integral (sum) of type (3) over the 
total energy spectrum (continuous and discrete) allows the use of perturbation methods 
with respect to powers of the interaction parameter. In particular these methods are 
possible in the case when a bound state appears or disappears as a result of a 
perturbation in the potential. 

A jump of Z(A) at the threshold corresponding to a bound state of 1 > 0 is connected 
with the fact that the resonance due to the centrifugal barrier becomes a bound state 
and goes out of the integration region in (3). But, if a potential has a barrier, then 
resonance is also possible for 1 = 0. An effect of such resonance on the threshold 
behaviour of Z(A) is discussed in appendix 2. 

Finally we wish to make the following remark. We have assumed that F ( E )  in 
(3) is an analytic function in a certain region enclosing the integration contour. 
However, if F ( E )  has a singularity at the contour, for example F ( E )  - ( E  - E ' ) - ' ,  we 
can divide the integration path into two parts: from nought to El and from El to 
E,  where ,??I < E '  (the condition (7) is significant). Then the results of this paper are 
valid for the first of the integrals. Moreover, one can easily see that the results are 
independent of the upper integration limit. 

Appendix 1 

As is well known, the dipole matrix element can be written in three forms: length, 
velocity and acceleration. We use the last. For a potential satisfying (2) the acceleration 
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form of the radial matrix element is expressed by the equation ( I '  = I* 1) 

P,.(E', r)) dr 
aP,,(E', r )  aP,(E, r )  + 

dr dr 
dv 
dr 

dp PI@, r)  -P@', r )  dr = 

which coincides with (4)  if we put Aul  = A l o  = u(r), Aoo = A z o  = Ao2 = 0, CY = U ,  p = 6. 
Let us assume that u ( r )  behaves as r-lta, where E > O ,  near the origin. Then the 

matrix element of the kinetic energy operator, T = - ; V 2 ,  can be also expressed by 
(4).  We have (the operator V in parentheses acts only on a function in the same 
brackets) 

(€'IV2H -HV21€) - - ( € ' ( ( V 2 u  + 2 ( V u  )VIE) 
( E ' / T / E )  = 

2 ( E ' - E )  4 ( E ' - E )  

where H = - i ( V 2  - v (r)) .  Next 

Consequently for I '  = 1 

Appendix 2 

We now wish to discuss the effect of a potential barrier on the threshold behaviour 
of I ( A ) .  The threshold behaviour depends on the behaviour of the wavefunction at 
zero energy, i.e., ultimately, on the barrier penetrability at E = 0. 

As is well known, the resonant level in a potential well surrounded by a barrier 
becomes a bound one as the well is deepened. If the barrier penetrability reduces to 
zero at E = 0, then the resonance becomes directly a bound state (the zeros of the 
Jost function corresponding to the resonance coalesce on the real k axis in the origin) 
(Demkov and Drukarev 1965, Newton 1966). This takes place in the case of the 
centrifugal barrier ( l >  0) considered in this paper. For 1 = 0 the barrier penetrability 
at E = 0 is non-zero; this is a consequence of equation (2) .  Therefore there is an 
intermediate region of A corresponding to virtual state (the zeros of the Jost function 
coalesce on the negative imaginary axis). I n  this case the threshold behaviour is 
transitional between those shown in  figures 4 ( a )  and ( b ) .  It should be, evidently, 
similar to that presented in figure 5 .  
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-- 
A0 A 

Figure 5. The threshold behaviour of Z(h J and ["(A) in the case of a potential barrier of 
non-zero penetrability at E = 0. 
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